FI-modules: a new approach to stability for Sn-representations

نویسندگان

  • Thomas Church
  • Jordan S. Ellenberg
  • Benson Farb
چکیده

In this paper we introduce and develop the theory of FI-modules. We apply this theory to obtain new theorems about: • the cohomology of the configuration space of n distinct ordered points on an arbitrary manifold; • the diagonal coinvariant algebra on r sets of n variables; • the cohomology and tautological ring of the moduli space of n-pointed curves; • the space of polynomials on rank varieties of n× n matrices; • the subalgebra of the cohomology of the genus n Torelli group generated by H; and more. The symmetric group Sn acts on each of these vector spaces. In most cases almost nothing is known about the characters of these representations, or even their dimensions. We prove that in each fixed degree the character is given, for n large enough, by a polynomial in the cycle-counting functions that is independent of n. In particular, the dimension is eventually a polynomial in n. FI-modules are a refinement of Church–Farb’s theory of representation stability for representations of Sn. In this framework, a complicated sequence of Sn-representations becomes a single FI-module, and representation stability becomes finite generation. FI-modules also shed light on classical results. From this point of view, Murnaghan’s theorem on the stability of Kronecker coefficients is not merely an assertion about a list of numbers, but becomes a structural statement about a single mathematical object.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FI-modules and stability for representations of symmetric groups

In this paper we introduce and develop the theory of FI-modules. We apply this theory to obtain new theorems about: • the cohomology of the configuration space of n distinct ordered points on an arbitrary (connected, oriented) manifold; • the diagonal coinvariant algebra on r sets of n variables; • the cohomology and tautological ring of the moduli space of n-pointed curves; • the space of poly...

متن کامل

Using both Binary and Residue Representations for Achieving Fast Converters in RNS

In this paper, a new method is introduced for improving the efficiency of the Residue Number System, which uses both binary and residue representations in order to represent a number. A residue number system uses the remainder of the division in several different modules. Conversion of a number to smaller ones and carrying out parallel calculations on these numbers greatly increase the speed of...

متن کامل

Using both Binary and Residue Representations for Achieving Fast Converters in RNS

In this paper, a new method is introduced for improving the efficiency of the Residue Number System, which uses both binary and residue representations in order to represent a number. A residue number system uses the remainder of the division in several different modules. Conversion of a number to smaller ones and carrying out parallel calculations on these numbers greatly increase the speed of...

متن کامل

Monomial Irreducible sln-Modules

In this article, we introduce monomial irreducible representations of the special linear Lie algebra $sln$. We will show that this kind of representations have bases for which the action of the Chevalley generators of the Lie algebra on the basis elements can be given by a simple formula.

متن کامل

Modules whose direct summands are FI-extending

‎A module $M$ is called FI-extending if every fully invariant submodule of $M$ is essential in a direct summand of $M$‎. ‎It is not known whether a direct summand of an FI-extending module is also FI-extending‎. ‎In this study‎, ‎it is given some answers to the question that under what conditions a direct summand of an FI-extending module is an FI-extending module?

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012